Product Code Database
Example Keywords: nokia -wii $30
   » » Wiki: Moyal Bracket
Tag Wiki 'Moyal Bracket'.
Tag

Moyal bracket
 (

Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar

In , the Moyal bracket is the suitably normalized antisymmetrization of the phase-space .

The Moyal bracket was developed in about 1940 by José Enrique Moyal, but Moyal only succeeded in publishing his work in 1949 after a lengthy dispute with .

(2025). 9781920942595 .
In the meantime this idea was independently introduced in 1946 by Hip Groenewold.


Overview
The Moyal bracket is a way of describing the of observables in the phase space formulation of quantum mechanics when these observables are described as functions on . It relies on schemes for identifying functions on phase space with quantum observables, the most famous of these schemes being the Wigner–Weyl transform. It underlies Moyal’s dynamical equation, an equivalent formulation of Heisenberg’s quantum equation of motion, thereby providing the quantum generalization of Hamilton’s equations.

Mathematically, it is a deformation of the phase-space (essentially an extension of it), the deformation parameter being the reduced . Thus, its group contraction yields the .

Up to formal equivalence, the Moyal Bracket is the unique one-parameter Lie-algebraic deformation of the Poisson bracket. Its algebraic isomorphism to the algebra of commutators bypasses the negative result of the Groenewold–van Hove theorem, which precludes such an isomorphism for the Poisson bracket, a question implicitly raised by Dirac in his 1926 doctoral thesis,P. A. M. Dirac (1926) Cambridge University Thesis "Quantum Mechanics" the "method of classical analogy" for quantization.P.A.M. Dirac, "The Principles of Quantum Mechanics" ( Clarendon Press Oxford, 1958)

For instance, in a two-dimensional flat , and for the Weyl-map correspondence, the Moyal bracket reads,

\begin{align}
\{\{f,g\}\} & \stackrel{\mathrm{def}}{=}\ \frac{1}{i\hbar}(f\star g-g\star f) \\
           & = \{f,g\} + O(\hbar^2), \\
     
\end{align} where is the star-product operator in phase space (cf. ), while and are differentiable phase-space functions, and is their Poisson bracket.Conversely, the Poisson bracket is formally expressible in terms of the star product, = 2.

More specifically, in operational calculus language, this equals

The left & right arrows over the partial derivatives denote the left & right partial derivatives. Sometimes the Moyal bracket is referred to as the Sine bracket.

A popular (Fourier) integral representation for it, introduced by George Baker is

\{ \{ f,g \} \}(x,p) = {2 \over \hbar^3 \pi^2 } \int dp' \, dp \, dx' \, dx f(x+x',p+p') g(x+x ,p+p)\sin \left( \tfrac{2}{\hbar} (x'p -xp')\right)~.

Each correspondence map from phase space to Hilbert space induces a characteristic "Moyal" bracket (such as the one illustrated here for the Weyl map). All such Moyal brackets are formally equivalent among themselves, in accordance with a systematic theory., , and , "Quantum Mechanics in Phase Space" ( World Scientific, Singapore, 2005) .

The Moyal bracket specifies the eponymous infinite-dimensional —it is antisymmetric in its arguments and , and satisfies the . The corresponding abstract is realized by , so that

= T_{i\hbar \{ \{ f,g \} \} }.
On a 2-torus phase space, , with periodic coordinates and , each in , and integer mode indices , for basis functions , this Lie algebra reads,
=
2i \sin \left (\tfrac{\hbar}{2}(n_1 m_2 - n_2 m_1 )\right ) ~ T_{m_1+n_1,m_2+ n_2}, ~ which reduces to SU( N) for integer . SU( N) then emerges as a deformation of SU(∞), with deformation parameter 1/ N.

Generalization of the Moyal bracket for quantum systems with second-class constraints involves an operation on equivalence classes of functions in phase space, which can be considered as a quantum deformation of the .


Sine bracket and cosine bracket
Next to the sine bracket discussed, Groenewold further introduced the cosine bracket, elaborated by Baker,See also the citation of Baker (1958) in: arXiv:hep-th/9711183v3
\begin{align}
\{ \{ \{f ,g\} \} \} & \stackrel{\mathrm{def}}{=}\ \tfrac{1}{2}(f\star g+g\star f) = f g + O(\hbar^2). \\ \end{align} Here, again, is the star-product operator in phase space, and are differentiable phase-space functions, and is the ordinary product.

The sine and cosine brackets are, respectively, the results of antisymmetrizing and symmetrizing the star product. Thus, as the sine bracket is the Wigner map of the commutator, the cosine bracket is the Wigner image of the in standard quantum mechanics. Similarly, as the Moyal bracket equals the Poisson bracket up to higher orders of , the cosine bracket equals the ordinary product up to higher orders of . In the , the Moyal bracket helps reduction to the Liouville equation (formulated in terms of the Poisson bracket), as the cosine bracket leads to the classical Hamilton–Jacobi equation.: Phase space descriptions of quantum phenomena, in: A. Khrennikov (ed.): Quantum Theory: Re-consideration of Foundations–2, pp. 267-286, Växjö University Press, Sweden, 2003 ( PDF)

The sine and cosine bracket also stand in relation to equations of a purely algebraic description of quantum mechanics.M. R. Brown, B. J. Hiley: Schrodinger revisited: an algebraic approach, arXiv:quant-ph/0005026 (submitted 4 May 2000, version of 19 July 2004, retrieved June 3, 2011)

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time